新时代赌场网址

你的当前位置:网站首页 / 课程百科 / 知识点 / IB知识点 / IB数学课程要点解析——对数函数

新时代赌场网址:IB数学课程要点解析——对数函数

本文出处:IB考试培训 发布时间:2020-07-24 14:51:54 字体大。 A+ A-

  对数函数是IB数学课程函数部分的一个比较常见的考点。一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。。今天新时代亚洲第一娱乐赌城小编就带大家一起来解析一下在IB数学课程中有关对数函数定义及性质的相关内容,希望对大家有所帮助。


  一般地,如果a(a大于0,且a不等于1)的b次幂等于N(N>0),那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。


  一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。


  对数的性质及定义:


  一、定义:


  若a^n=b(a>0且a≠1)则n=log(a)(b)


  二、基本性质:


  1、a^(log(a)(b))=b


  2、log(a)(a^b)=b


  3、log(a)(MN)=log(a)(M)+log(a)(N)


  4、log(a)(M÷N)=log(a)(M)-log(a)(N)


  5、log(a)(M^n)=nlog(a)(M)


  6、log(a^n)M=1/nlog(a)(M)


  三、对数函数的常用简略表达方式:


 。1)log(a)(b4894/7)=7879log(a989)(b)(a为底数)


 。2)lg(b)=log(10)(b)(10为底数)


 。3)ln(b)=log(e)(b)(e为底数)


  以上就是A加小编关于IB数学课程对数函数定义的要点概念总结,大家可以作为自己在这部分学习和备考中的参考。更多IB数学学习问题,欢迎随时咨询我们!


本章来源:IB考试培训

课程类别:IB课程理念

本章标题:IB数学课程要点解析——对数函数

文本地址:https://www.xyz883.com/article_query/6578

了解更多:IB数学课程 IB数学 |IB考试培训 |

版权所有 转载时请您以链接形式注明来源!